Zero forcing number, constrained matchings and strong structural controllability
نویسندگان
چکیده
The zero forcing number is a graph invariant introduced in order to study the minimum rank of the graph. In the first part of this paper, we first highlight that the computation of the zero forcing number of any directed graph (allowing loops) is NP-hard. Furthermore, we identify a class of directed trees for which the zero forcing number is computable in linear time. The second part of the paper is an application of the notion of zero forcing set in the study of the strong structural controllability of networked systems. This kind of controllability takes into account only the structure of the interconnection graph, but not the interaction strengths along the edges. We present the first efficient algorithm providing a minimum-size input set for the strong structural controllability of a self-damped or an undamped system with a tree structure.
منابع مشابه
Zero forcing number, constraint matchings and strong structural controllability
The zero forcing number is a graph invariant introduced in order to study the minimum rank of the graph. In the first part of this paper, we first highlight that the computation of the zero forcing number of any directed graph (allowing loops) is NP-hard. Furthermore, we identify a class of directed trees for which the zero forcing number is computable in linear time. The second part of the pap...
متن کاملGlobal Forcing Number for Maximal Matchings under Graph Operations
Let $S= \{e_1,\,e_2, \ldots,\,e_m\}$ be an ordered subset of edges of a connected graph $G$. The edge $S$-representation of an edge set $M\subseteq E(G)$ with respect to $S$ is the vector $r_e(M|S) = (d_1,\,d_2,\ldots,\,d_m)$, where $d_i=1$ if $e_i\in M$ and $d_i=0$ otherwise, for each $i\in\{1,\ldots , k\}$. We say $S$ is a global forcing set for maximal matchings of $G$ if $...
متن کاملComplete forcing numbers of polyphenyl systems
The idea of “forcing” has long been used in many research fields, such as colorings, orientations, geodetics and dominating sets in graph theory, as well as Latin squares, block designs and Steiner systems in combinatorics (see [1] and the references therein). Recently, the forcing on perfect matchings has been attracting more researchers attention. A forcing set of M is a subset of M contained...
متن کاملOn the zero forcing number of some Cayley graphs
Let Γa be a graph whose each vertex is colored either white or black. If u is a black vertex of Γ such that exactly one neighbor v of u is white, then u changes the color of v to black. A zero forcing set for a Γ graph is a subset of vertices Zsubseteq V(Γ) such that if initially the vertices in Z are colored black and the remaining vertices are colored white, then Z changes the col...
متن کاملControllability of Complex Networks : Supplementary Information
This Supplementary Information is organized as follows. In Sec. II, we clarify the fundamental differences between our work and previous research on network controllability. In Sec. III, we give a short introduction to the structural control theory, which can be simply applied to directed networks. The reasons why we focus on linear dynamics are given in Sec. III A. Some simple examples in Sec....
متن کامل